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3.1  Shape from X

Techniques based on:
– Modifying the intrinsic camera parameters

i.e. Depth from Focus/Defocus and Depth from Zooming

– Considering an additional source of light onto the scene
i.e. Shape from Structured Light and Shape from Photometric 

StStereo

– Considering additional surface information
Sh f F /D f

g
i.e. Shape from Shading, Shape from Texture and Shape from 

Geometric Constraints

Shape from Focus/Defocus

– Multiple views
i.e. Shape from Stereo and Shape from Motion

3D reconstruction from two views3D reconstruction from two views
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3.1  Shape from X

Techniques based on:
– Modifying the intrinsic camera parameters

i.e. Depth from Focus/Defocus and Depth from Zooming

– Considering an additional source of light onto the scene
i.e. Shape from Structured Light and Shape from Photometric 

StStereo

– Considering additional surface informationg
i.e. Shape from Shading, Shape from Texture and Shape from 

Geometric Constraints

– Multiple views
i.e. Shape from Stereo and Shape from Motion

Shape from Structured Light

3D reconstruction from two views3D reconstruction from two views
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3.1  Shape from X

Techniques based on:
– Modifying the intrinsic camera parameters

i.e. Depth from Focus/Defocus and Depth from Zooming

– Considering an additional source of light onto the scene
i.e. Shape from Structured Light and Shape from Photometric 

StStereo

– Considering additional surface informationg
i.e. Shape from Shading, Shape from Texture and Shape from 

Geometric Constraints

– Multiple views
i.e. Shape from Stereo and Shape from Motion

3D reconstruction from two views3D reconstruction from two viewsShape from Shading
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3.1  Shape from X

Techniques based on:
– Modifying the intrinsic camera parameters

i.e. Depth from Focus/Defocus and Depth from Zooming

– Considering an additional source of light onto the scene
i.e. Shape from Structured Light and Shape from Photometric 

StStereo

– Considering additional surface informationg
i.e. Shape from Shading, Shape from Texture and Shape from 

Geometric Constraints

– Multiple views
i.e. Shape from Stereo and Shape from Motion

Shape from Stereo

3D reconstruction from two views3D reconstruction from two views
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3.2  Stereo Vision Introduction
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3.3  Triangulation Principle
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3.3  Triangulation Principle
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3.3  Triangulation Principle

W

WOc1

WP2D1 u

v

WP3D

WP2D2

pq

Pa = P1 + mua (P2 - P1)
WOc2

a 1 ua ( 2 1)
Pb = P3 + mub (P4 - P3) 

Two different ways:

Minimize the distance between points:
Min || Pb - Pa ||2
Min || P + m (P P ) P m (P P ) ||2

Compute the dot product between vectors:
(Pa - Pb)T (P2 - P1) = 0 
(P P )T (P P ) = 0 Min || P1 + mua (P2 - P1) - P3 - mub (P4 - P3) ||2

Finding mua and mub once expanded to (x,y and z)
(Pa - Pb)T (P4 - P3) = 0 

Because they are perpendicular.
Finding mua and mub once expanded to Pa, Pb
and (x y and z)

3D reconstruction from two views3D reconstruction from two views

http://astronomy.swin.edu.au/~pbourke/geometry/lineline3d/ and (x,y and z)
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3.3  Constraints in Stereo Vision

I I C WA K M
3D Reconstruction:
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Constraints:
Th C d P bl F/E t i• The Correspondence Problem F/E matrix

3D reconstruction from two views3D reconstruction from two views
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3.3  Constraints in Stereo Vision

Calibrated 3D Reconstruction process:

1 Th I l P k (b

M
OI

O

OW

1. The Internal Parameters are known (by
camera calibration)

2. Calculate the Fundamental Matrix m’

OI’

3. Determine the External Parameters
(rotation and translation from one camera to 
the other) from the Fundamental Matrix OC’

O

m
m

4. Determine 3D point locations, i.e. perform
the 3D reconstruction.

I’I

OC

II

3D reconstruction from two views3D reconstruction from two views
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3.3  Constraints in Stereo Vision

I I C WA K M
3D Reconstruction:

M
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OW

Unknown 3D I I C W
C Ws m A K M=

' ' '
' '' ' ' 'I I C W

C Ws m A K M=
m’

OI’coordinates

OC’
O

m
m

Intrinsic and extrinsic
parameters

2D image
coordinates

I’I

OCparameterscoordinates

II

Obtained by
Feature extraction

techniques
The intrinsic parameters must be obtained from camera calibration.
The extrinsic parameters are obtained from the FUNDAMENTAL MATRIXq

3D reconstruction from two views3D reconstruction from two views
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3.4  Epipolar Geometry (I) - Modelling
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All i l li i t t t th i l

3D reconstruction from two views3D reconstruction from two views

• All epipolar lines intersect at the epipole
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3.4  Epipolar Geometry (II) - Modelling

Epipolar geometry of Camera 1 Epipolar geometry of Camera 2

Epipole

E i l

Area 1

Area 2

Epipole

Epipolar lines

Epipolar lines

Correspondence
Z Zoom pointsZoom 
Area 1

Zoom 
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3.4  Epipolar Geometry (III) - Modelling

epipole

epipole

3D reconstruction from two views3D reconstruction from two views
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3.4  Epipolar Geometry (IV) - Modelling
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•The Epipolar Geometry concerns the problem of computing the plane Π.
• A plane is defined by the cross product between two vectors

3D reconstruction from two views3D reconstruction from two views

• M is unknown, m and m’ are known
• {W} is located at {C} or {C’} and Π can be computed at {C} or {C’} 
4 solutions
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3.4  Epipolar Geometry (IV) - Modelling
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• M is unknown, m and m’ are knowns
• {W} is located at {C} or {C’} and Π can be computed at {C} or {C’} 
4 solutions
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3.4  Epipolar Geometry (V) - Modelling
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[ ]IP = 0
[ ] t

t
I

C
Pe =⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

1
0

1
'

3D reconstruction from two views3D reconstruction from two views

[ ]
[ ]tRPKP

tRK
==

=
' [ ] tRtRRPe ttt −=⎥

⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
= −

1
0

1
0

'' 1



20
3.4  Epipolar Geometry (VI) - Modelling

• Assume {W} at {C}
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Since epipolar lines are contained in the plane Π, we can define the line by 

[ ])(''' 1 mtRmtRmRtRmPel x
tttt
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Since epipolar lines are contained in the plane Π, we can define the line by 
a cross product of two vectors, obtaining the orthogonal vector of the line. 

3D reconstruction from two views3D reconstruction from two views
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3.4  Epipolar Geometry (VII) - Modelling
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3.4  Epipolar Geometry (VIII) - Modelling
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3.4  Epipolar Geometry (IX) - Modelling

F and F’ are related by a transpose. So,
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The same dissertation can be made assuming the origin at 
{C’}, obtaining two more fundamental matrices that are also 
related to F and F’.

3D reconstruction from two views3D reconstruction from two views



24
3.4  Epipolar Geometry (X) - Modelling

The Essential Matrix is the calibrated case of the Fundamental matrix.
• The Intrinsic parameters are known: A and A’ are knownThe Intrinsic parameters are known: A and A are known

The problem is reduced to estimate E or E’.
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The monocular stereo is a symplified version of F where A = A’, reducing the 
complexity of computing F.
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3.5  Computing F: The Eight Point Method

The epipolar geometry is defined as:

' ' 0Tm m =F [ ]1 ' 0
1

i

i i i

x
x y y

′⎡ ⎤
⎢ ⎥′ =⎢ ⎥
⎢ ⎥⎣ ⎦

F
1⎢ ⎥⎣ ⎦

Operating we obtain:Operating, we obtain:

0nU f =

( )1u x x y x x x y y y y x y′ ′ ′ ′ ′ ′=

( )1 2, ,..., t
n nU u u u=

( )11 12 13 21 22 23 31 32 33, , , , , , , , tf F F F F F F F F F=

( ), , , , , , , ,1i i i i i i i i i i i i iu x x y x x x y y y y x y=

3D reconstruction from two views3D reconstruction from two views
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3.5  Computing F: The Eight Point Method and LS

0nU f =
0f

F is defined up to a scale factor, so we can fix one of the component to 1.

First solution is : 0f = NOT WANTED

1n nU f′ ′ = −

p , p
Let’s fix F33 = 1.

( ), , , , , , ,i i i i i i i i i i i i iu x x y x x x y y y y x y′ ′ ′ ′ ′ ′ ′=

( )1 2, ,..., t
n nU u u u′ ′ ′ ′=

( )11 12 13 21 22 23 31 32, , , , , , , tf F F F F F F F F=

( ), , , , , , ,i i i i i i i i i i i i iy y y y y y

Then:
1 11n n n nU U f U− −′ ′ ′ ′= −

11n nf U −′ ′= − ( ) 1
1t t

n n n nf U U U
−

′ ′ ′ ′= − Least-Squares

3D reconstruction from two views3D reconstruction from two views

n nf ( )n n n n
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3.5  Computing F: The Eight Point Method and Eigen Analysis

0nU f =
0fFirst solution is : 0f = NOT WANTED

⎤⎡ −0 yz
F has to be rank-2 because [tx] is rank-2.

[ ] 1' −−= AA x
tt tRF [ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=
0

0
0

xy
xz

yz
t x

A t f tiAny system of equations:

can be solved by SVD so that f lies in the nullspace of U UDVT

( )11 12 13 21 22 23 31 32 33, , , , , , , , tf F F F F F F F F F=0nU f =
can be solved by SVD so that f lies in the nullspace of Un= UDVT .

[U,D,V] = svd (Un)

Hence f corresponds to a multiple of the column of V that belongs to the 
unique singular value of D equal to 0. 
Note that f is only known up to a scaling factor

3D reconstruction from two views3D reconstruction from two views

Note that f is only known up to a scaling factor.
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3.5  Computing the Fundamental Matrix: A Survey

Linear Iterative Robust Optimisation Rank-2
Seven point (7p) X — yes

Eight point (8p) X LS or Eig. no

Rank-2 constraint X LS yes

Iterative Newton- X LSIterative Newton
Raphson X LS no

Linear iterative X LS no

Non-linear 
minimization in 
parameter space

X Eig. yes

Gradient technique X LS or Eig. no

FNS X AML no

CFNS X AML no

M-Estimator X LS or Eig. no / yes

LMedS X 7p / LS or Eig. no

RANSAC X 7p / Eig no

MLESAC X AML no

3D reconstruction from two views3D reconstruction from two views

MLESAC X AML no

MAPSAC X AML no

LS: Least-Squares    Eig: Eigen Analysis    AML: Approximate Maximum Likelihood

Least-squares Eigen Analysis Approximate Maximum
Likelihood
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3.6  Accuracy Evaluation

Image plane camera 1 Image plane camera 2 

3D reconstruction from two views3D reconstruction from two views
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3.7  Experimental Results: Synthetic Images (I)

*
Linear methods: Good results if the points are well located and no outilers

mean
std

Methods: 1.- 7-Point; 2.- 8-Point with Least-Squares;* M d Std i i l

3D reconstruction from two views3D reconstruction from two views

Methods: 1. 7 Point; 2. 8 Point with Least Squares; 
3.- 8-Point with Eigen Analysis 4.- Rank-2 Constraint

* Mean and Std. in pixels
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3.7  Experimental Results: Synthetic Images (I)

*
Iterative methods: Can cope with noise but inefficient in the presence of outliers

3D reconstruction from two views3D reconstruction from two views* Mean and Std. in pixels

Methods: 5.- Iterative Linear; 6.- Iterative Newton-Raphson;
7.- Minimization in parameter space; 
8.- Gradient using LS; 9.- Gradient using Eigen;
10.- FNS; 11.- CFNS



32
3.7  Experimental Results: Synthetic Images (I)

Robust methods: Cope with both noise and outliers

3D reconstruction from two views3D reconstruction from two views* Mean and Std. in pixels

Methods: 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;
14.- M-Estimator proposed by Torr; 
15.- LMedS using LS; 16.- LMedS using Eigen;
17.- RANSAC; 18.- MLESAC; 19.- MAPSAC.
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3.7  Experimental Results: Synthetic Images (II)

1.2

1.4

Linear Iterative Robust
Computing Time

1

1.2

0.8

se
c.

0.4

0.6

s

0.2

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

Methods
1 - 7-Point; 2 - 8-Point with Least-Squares; 3 - 8-Point with Eigen Analysis; 4 - Rank-2 Constraint;

3D reconstruction from two views3D reconstruction from two views

1. 7 Point; 2. 8 Point with Least Squares; 3. 8 Point with Eigen Analysis; 4. Rank 2 Constraint;
5.- Iterative Linear; 6.- Iterative Newton-Raphson; 7.- Minimization in parameter space; 8.- Gradient using LS; 
9.- Gradient using Eigen; 10.- FNS; 11.- CFNS; 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;
14.- M-Estimator proposed by Torr; 15.- LMedS using LS; 16.- LMedS using Eigen; 17.- RANSAC; 
18.- MLESAC; 19.- MAPSAC.
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3.7  Experimental Results: Real Images (I)

3D reconstruction from two views3D reconstruction from two views
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3.7  Experimental Results: Real Images (II)

*

Methods: 1.- 7-Point; 2.- 8-Point with Least-Squares; 
3.- 8-Point with Eigen Analysis 4.- Rank-2 Constraint

Methods: 5.- Iterative Linear; 6.- Iterative Newton-Raphson;
7.- Minimization in parameter space; 
8.- Gradient using LS; 9.- Gradient using Eigen;

Methods: 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;
14.- M-Estimator proposed by Torr; 
15.- LMedS using LS; 16.- LMedS using Eigen;

* Mean and Std in pixels

3D reconstruction from two views3D reconstruction from two views

10.- FNS; 11.- CFNS17.- RANSAC; 18.- MLESAC; 19.- MAPSAC.* Mean and Std. in pixels



36
3.8  Calibrated reconstruction

Calibrated 3D Reconstruction process:

1 Th I l P k (b

M
OI

O

OW

1. The Internal Parameters are known (by
camera calibration)

2. Calculate the Fundamental Matrix m’

OI’

3. Determine the External Parameters
(rotation and translation from one camera to 
the other) from the Fundamental Matrix OC’

O

m
m

4. Determine 3D point locations, i.e. perform
the 3D reconstruction.

I’I

OC

II

3D reconstruction from two views3D reconstruction from two views
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3.8  Calibrated reconstruction

Determine the External Parameters:

1 D i h E i l i E f h

M
OI

O

OW

1. Determine the Essential matrix E from the 
fundamental matrix F and the camera 
calibration matrix K, since we know the 
Intrinsic Parameters of the camera. m’

OI’

Intrinsic Parameters of the camera.

[ ] 1' −−= AA tRF x
tt [ ]tRE x

t= OC’
O

m
m

[ ] 1'' −−= AA RtF x
t [ ] RtE x='

I’I

OC

2. Calculate the External Parameters: R and t

a) SVD of E: E = USVT

II

R = UWVT or UWTVT

t = u3 or -u3, where u3 is the last column of U
There are 4 combinations of 

translations and rotations.

3D reconstruction from two views3D reconstruction from two views
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3.8  Calibrated reconstruction

Determine the External Parameters:

1 D i h E i l i E f h1. Determine the Essential matrix E from the 
fundamental matrix F and the camera 
calibration matrix K, since we know the 
Intrinsic Parameters of the camera.

I I C W
C Ws m A K M=

' ' '' ' ' 'I I C Ws m A K M=Intrinsic Parameters of the camera.

[ ] 1' −−= AA tRF x
tt [ ]tRE x

t=

' 'C Ws m A K M=

Unknown 3D2D image

[ ] 1'' −−= AA RtF x
t [ ] RtE x='

Unknown 3D 
coordinates

2D image
coordinates

The correct pair 
2. Calculate the External Parameters: R and t

a) SVD of E: E = USVT

p
will produce points 
in front of both 
cameras.

R = UWVT or UWTVT

t = u3 or -u3, where u3 is the last column of U
There are 4 combinations of 

translations and rotations.

3D reconstruction from two views3D reconstruction from two views
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3.10  Stereo vision using ...

White Box model Black Box model

I li it d l l t thExplicit model: the physical parameters 
of  the camera are known

Implicit model: emulates the camera 
behavior without actually knowing the 
camera parameters.

A t f t f f ti dAs close as possible to a full description 
of the real system

A set of transfer functions and 
parameters that do not describe any 
internal physics.

• Do you think that is possible to build a black box model of a stereo 
configuration of cameras?g

• What are the inputs? / Outputs?

3D reconstruction from two views3D reconstruction from two views
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3.10  Stereo vision using fuzzy systems

3D reconstruction from two views3D reconstruction from two views
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3.10  Stereo vision using fuzzy systems

Camera 1 Camera 23D points

The 3D points are calculated taking as 
origin of the coordonate system the lower 
l ft f th lib ti ttleft corner of the calibration pattern.

The pattern is moved at different known 
distances from the camera and the 
stereo images are captured.
The 2D points are identified and 
matched in all the images.
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3.10  Stereo vision using fuzzy systems

Camera 1 Camera 2

3D points

Fuzzy system X
2D 

points

Fuzzy system Y

p

Fuzzy system Z

Calibration of the fuzzy system using the 
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3D and 2D points 
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3.10  Stereo vision using fuzzy systems

White Box Model Black Box Model

Features Crisp (White Box) Fuzzy (Black Box)

Robustness to noise Low High

Accuracy outside of a bounding box High LowAccuracy outside of a bounding box High Low

Model simplicity Low High

Adaptability to new camera configurations Low High
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End of the SSIP presentation

Thank you for your time.y y

Any questions?
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