

SSIP 2011

19th Summer School on Image Processing 7 July - 16 July 2011 •Szeged, Hungary

3D Reconstruction from two views

Presented by Radu Orghidan

Contents

3. Reconstruction from two views

3.1 Shape from X
3.2 Stereo Vision Introduction
3.3 Triangulation Principle and Constraints
3.4 Epipolar Geometry
3.5 Computing the Fundamental Matrix
3.6 Accuracy Evaluation
3.7 Experimental Results
3.8 Calibrated reconstruction
4. Calibration using fuzzy systems

3.1 Shape from X

Techniques based on:

- Modifying the intrinsic camera parameters
i.e. Depth from Focus/Defocus and Depth from Zooming
- Considering additional surface in
i.e. Shape from Shading, Shape frGir rexturc arrus orropus .nom Geometric Constraints
- Multiple views
i.e. Shape from Stereo and Shape from Motion

3.1 Shape from X

Techniques based on:

- Modifying the intrinsic camera parameters
i.e. Depth from Focus/Defocus and Depth from Zooming
- Considering an additional source of light onto the scene
i.e. Shape from Structured Light and Shape from Photometric
- Considering additiond ind in Shape from Shading, Shape fre Geometric Constraints
- Multiple views

i.e. Shape from Stereo and Shape from Motion

3.1 Shape from X

Techniques based on:

- Modifying the intrinsic camera parameters
i.e. Depth from Focus/Defocus and Depth from Zooming
- Considering an additional source of light onto the scene i.e. Shape from Structured Light and Shape from Photometric Stereo
- Considering additional surface information
i.e. Shape from Shading, Shape from Texture and Shape from Geometric Const s
- Multiple views
i.e. Shape from Stereo and Shape

Shape from Shading

3.1 Shape from X

Techniques based on:

- Modifying the intrinsic camera parameters
i.e. Depth from Focus/Defocus and Depth from Zooming
- Considering an additional source of light onto the scene i.e. Shape from Structured Light and Shape from Photometric Stereo
- Considering additional surface in i.e. Shape from Shading, Shepe fr Geometric Constry
- Multiple views

i.e. Shape from Stereo and Shape from Motion

3.2 Stereo Vision Introduction

3D reconstruction from two views

3.3 Triangulation Principle

3.3 Triangulation Principle

3.3 Triangulation Principle

Two different ways:

Minimize the distance between points:

$$
\begin{aligned}
& \text { Min \| } \mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{a}} \|^{2} \\
& \quad \text { Min \| } \mathrm{P}_{1}+\mathrm{m}_{\mathrm{ua}}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)-\mathrm{P}_{3}-\mathrm{m}_{\mathrm{ub}}\left(\mathrm{P}_{4}-\mathrm{P}_{3}\right) \|^{2} \\
& \text { Finding } \mathrm{m}_{\mathrm{ua}} \text { and } \mathrm{m}_{\mathrm{lb}} \text { once expanded to }(\mathrm{x}, \mathrm{y} \text { and } \mathrm{z})
\end{aligned}
$$

http://astronomy.swin.edu.au/~pbourke/geometry/lineline3d/

$$
\begin{aligned}
& \text { Compute the dot product between vectors: } \\
& \qquad\left(P_{a}-P_{b}\right)^{\top}\left(P_{2}-P_{1}\right)=0 \\
& \quad\left(P_{a}-P_{b}\right)^{\top}\left(P_{4}-P_{3}\right)=0 \\
& \text { Because they are perpendicular. } \\
& \text { Finding } m_{l a} \text { and } m_{\mathrm{tb}} \text { once expanded to } P_{a}, P_{b} \\
& \text { and }(x, y \text { and } z)
\end{aligned}
$$

3.3 Constraints in Stereo Vision

3D Reconstruction:

$$
s^{I} m={ }^{I} A_{C}{ }^{C} K_{W}{ }^{W} M
$$

$s^{\prime \prime}{ }^{\prime} m^{\prime}={ }^{I} A^{\prime}{ }_{C}{ }^{C}{ }^{\prime} K^{\prime}{ }_{W},{ }^{W} M$
${ }^{I} A_{C} ;{ }^{I^{\prime}} A^{\prime} C^{\prime}$ Intrinsics: Optics \& Internal Geometry
${ }^{C} K_{W} ;{ }^{C} K^{\prime}{ }_{W}$, Extrinsics: Camera Pose

Constraints:

- The Correspondence Problem \rightarrow F/E matrix

3.3 Constraints in Stereo Vision

Calibrated 3D Reconstruction process:

1. The Internal Parameters are known (by camera calibration)
2. Calculate the Fundamental Matrix
3. Determine the External Parameters (rotation and translation from one camera to the other) from the Fundamental Matrix
4. Determine 3D point locations, i.e. perform the 3D reconstruction.

3.3 Constraints in Stereo Vision

3D Reconstruction:

Unknown 3D coordinates

2D image coordinates

Obtained by
Feature extraction techniques

The intrinsic parameters must be obtained from camera calibration. The extrinsic parameters are obtained from the FUNDAMENTAL MATRIX

3.4 Epipolar Geometry (I) - Modelling

- Focal points, epipoles and epipolar lines

$\cdot e$ is defined by O_{C}, in $\{1\}, \mathrm{e}^{\prime}$ is defined by O_{C} in $\{1$ ' $\}$
- m defines an epipolar line in $\{1\} ; m^{\prime}$ defines an epipolar line in $\{1\}$
- All epipolar lines intersect at the epipole

3.4 Epipolar Geometry (II) - Modelling

Epipolar geometry of Camera 1

Epipolar geometry of Camera 2

3.4 Epipolar Geometry (III) - Modelling

3.4 Epipolar Geometry (IV) - Modelling

-The Epipolar Geometry concerns the problem of computing the plane $П$.

- A plane is defined by the cross product between two vectors
- M is unknown, m and m ' are known
- $\{\mathrm{W}\}$ is located at $\{\mathrm{C}\}$ or $\left\{\mathrm{C}^{\prime}\right\}$ and Π can be computed at $\{\mathrm{C}\}$ or $\left\{\mathrm{C}^{\prime}\right\} \rightarrow$ 4 solutions

3.4 Epipolar Geometry (IV) - Modelling

-The Epipolar Geometry concerns the problem of computing the plane П.

- A plane is defined by the cross product between two vectors
- M is unknown, m and m ' are knowns
- $\{\mathrm{W}\}$ is located at $\{\mathrm{C}\}$ or $\left\{\mathrm{C}^{\prime}\right\}$ and Π can be computed at $\{\mathrm{C}\}$ or $\left\{\mathrm{C}^{\prime}\right\} \rightarrow$ 4 solutions

3.4 Epipolar Geometry (V) - Modelling

3.4 Epipolar Geometry (VI) - Modelling

Since epipolar lines are contained in the plane Π, we can define the line by a cross product of two vectors, obtaining the orthogonal vector of the line.
$l_{m}^{\prime}=e^{\prime} \times P^{\prime-1} m=-R^{t} t \times R^{t} m=-R^{t}(t \times m)=-R^{t}[t]_{x} m$
$l_{m^{\prime}}=e \times P^{\prime} m^{\prime}=t \times R m^{\prime}=[t]_{x} R m^{\prime}$

3.4 Epipolar Geometry (VII) - Modelling

The Fundamental matrix is defined by inner product of a point with their epipolar line.

$$
\begin{aligned}
l_{m}^{\prime} & =-R^{t}[t]_{x} m \\
l_{m^{\prime}} & =[t]_{x} R m^{\prime}
\end{aligned}
$$

$$
\begin{array}{l|l}
m^{\prime} \cdot l_{m}^{\prime}=m^{\mathrm{t}} l_{m}^{\prime}=-m^{\prime t} R^{t}[t]_{x} m & 0=-m^{\prime t} R^{t}[t]_{x} m \\
m \cdot l_{m^{\prime}}=m^{t} l_{m^{\prime}}=m^{t}[t]_{x} R m^{\prime} & 0=m^{t}[t]_{x} R m^{\prime}
\end{array}
$$

Orthogonal, their cosinus is 0

3.4 Epipolar Geometry (VIII) - Modelling

$$
\begin{aligned}
& 0=-m^{\prime t} R^{t}[t]_{x} m=\left(\mathbf{A}^{\prime-1} \tilde{m}^{\prime}\right)^{t} R^{t}[t]_{x} \mathbf{A}^{-1} \tilde{m}=\tilde{m}^{\prime t} \mathbf{A}^{-t} R^{t}[t]_{x} \mathbf{A}^{-1} \tilde{m} \\
& 0=m^{t}[t]_{x} R m^{\prime}=\left(\mathbf{A}^{-1} \tilde{m}\right)^{t}[t]_{x} R \mathbf{A}^{-1} \tilde{m}^{\prime}=\tilde{m}^{t} \mathbf{A}^{-t}[t]_{x} R \mathbf{A}^{-1} \tilde{m}^{\prime} \\
& F=\mathbf{A}^{\prime-t} R^{t}[t]_{x} \mathbf{A}^{-1} \quad \tilde{m}^{\prime t} F \tilde{m}=0 \\
& F^{\prime}=\mathbf{A}^{-t}[t]_{x} R \mathbf{A}^{-1} \quad \begin{array}{r}
\tilde{m}^{t} F^{\prime} \tilde{m}^{\prime}=0
\end{array}
\end{aligned}
$$

3.4 Epipolar Geometry (IX) - Modelling

F and F' are related by a transpose. So,

$$
\begin{array}{ll}
F=F^{t} & F=\mathbf{A}^{-t} R^{t}[t]_{x} \mathbf{A}^{-1} \\
F^{\prime}=F^{t} & F^{\prime}=\mathbf{A}^{-t}[t]_{x} R \mathbf{A}^{-1}
\end{array}
$$

Demonstration:

$$
\begin{aligned}
& F^{t}=\left(\mathbf{A}^{\prime-t} R^{t}[t]_{x} \mathbf{A}^{-1}\right)^{t}=\mathbf{A}^{-t}\left(\mathbf{A}^{\prime-t} R^{t}[t]_{x}\right)^{t}=\mathbf{A}^{-t}[t]_{x}\left(\mathbf{A}^{\prime-t} R^{t}\right)^{t}=\mathbf{A}^{-t}[t]_{x} R \mathbf{A}^{\prime-1}=F^{\prime} \\
& F^{\prime t}=\left(\mathbf{A}^{-t}[t]_{x} R \mathbf{A}^{\prime-1}\right)^{t}=\mathbf{A}^{-t}\left(\mathbf{A}^{-t}[t]_{x} R\right)^{t}=\mathbf{A}^{\prime-t} R^{t}\left(\mathbf{A}^{-t}[t]_{x}\right)^{t}=\mathbf{A}^{-t} R^{t}[t]_{x} \mathbf{A}^{-1}=F
\end{aligned}
$$

The same dissertation can be made assuming the origin at $\left\{C^{\prime}\right\}$, obtaining two more fundamental matrices that are also related to F and F^{\prime}.

3.4 Epipolar Geometry (X) - Modelling

The Essential Matrix is the calibrated case of the Fundamental matrix.

- The Intrinsic parameters are known: A and A' are known

The problem is reduced to estimate E or E .

$$
\begin{aligned}
F & =\mathbf{A}^{-t} R^{t}[t]_{x} \mathbf{A}^{-1} \\
F^{\prime} & =\mathbf{A}^{-t}[t]_{x} R \mathbf{A}^{\prime-1}
\end{aligned} E^{\prime}=[t]_{x} R[t]_{x},
$$

The monocular stereo is a symplified version of F where $A=A^{\prime}$, reducing the complexity of computing F.

$$
\begin{aligned}
& F=\mathbf{A}^{-t} R^{t}[t]_{x} \mathbf{A}^{-1} \\
& F^{\prime}=\mathbf{A}^{-t}[t]_{x} R \mathbf{A}^{-1}
\end{aligned}
$$

3.5 Computing F: The Eight Point Method

The epipolar geometry is defined as:

$$
m^{T} \mathbf{F}^{\prime} m^{\prime}=0
$$

$$
\left[\begin{array}{lll}
x_{i} & y_{i} & 1
\end{array}\right] \mathbf{F} \cdot\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right]=0
$$

Operating, we obtain:

$$
\begin{aligned}
U_{n} f= & 0 \\
& U_{n}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \\
& u_{i}=\left(x_{i}^{\prime} x_{i}, y_{i}^{\prime} x_{i}, x_{i}, x_{i}^{\prime} y_{i}, y_{i}^{\prime} y_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}, 1\right) \\
& f=\left(F_{11}, F_{12}, F_{13}, F_{21}, F_{22}, F_{23}, F_{31}, F_{32}, F_{33}\right)^{t}
\end{aligned}
$$

3.5 Computing F: The Eight Point Method and LS ${ }^{26}$

$$
U_{n} f=0
$$

First solution is : $\quad f=0 \quad$ NOT WANTED

F is defined up to a scale factor, so we can fix one of the component to 1 .
Let's fix $\mathrm{F}_{33}=1$.

$$
\begin{aligned}
U_{n}^{\prime} f^{\prime} & =-1_{n} \\
U_{n}^{\prime} & =\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right) \\
u_{i}^{\prime} & =\left(x_{i}^{\prime} x_{i}, y_{i}^{\prime} x_{i}, x_{i}, x_{i}^{\prime} y_{i}, y_{i}^{\prime} y_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}\right) \\
f & =\left(F_{11}, F_{12}, F_{13}, F_{21}, F_{22}, F_{23}, F_{31}, F_{32}\right)^{t}
\end{aligned}
$$

Then:

$$
\begin{aligned}
U_{n}^{\prime-1} U_{n}^{\prime} f^{\prime} & =-U_{n}^{\prime-1} 1_{n} \\
f^{\prime} & =-U_{n}^{\prime-1} 1_{n} \quad \square f^{\prime}=-\left(U_{n}^{\prime t} U_{n}^{\prime}\right)^{-1} U_{n}^{\prime t} 1_{n}
\end{aligned}
$$

3.5 Computing F: The Eight Point Method and Eigen Analysis

$$
U_{n} f=0
$$

First solution is : $\quad f=0 \quad$ NOT WANTED
F has to be rank-2 because $\left[\mathrm{t}_{\mathrm{x}}\right]$ is rank-2.

$$
F=\mathbf{A}^{\prime-t} R^{t}[t]_{x} \mathbf{A}^{-1} \quad[t]_{x}=\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right]
$$

Any system of equations:

$$
U_{n} f=0 \quad f=\left(F_{11}, F_{12}, F_{13}, F_{21}, F_{22}, F_{23}, F_{31}, F_{32}, F_{33}\right)^{t}
$$

can be solved by SVD so that f lies in the nullspace of $U_{n}=U D V^{\top}$.
$[\mathrm{U}, \mathrm{D}, \mathrm{V}]=\operatorname{svd}\left(\mathrm{U}_{\mathrm{n}}\right)$
Hence f corresponds to a multiple of the column of V that belongs to the unique singular value of D equal to 0 .
Note that f is only known up to a scaling factor.

3.5 Computing the Fundamental Matrix: A Survey

	Linear	Iterative	Robust	Optimisation	Rank-2
Seven point (7p)	X			-	yes
Eight point (8p)	X			LS or Eig.	no
Rank-2 constraint	X			LS	yes
Iterative NewtonRaphson		X		LS	no
Linear iterative		X		LS	no
Non-linear minimization in parameter space		X		Eig.	yes
Gradient te					
FNS CFNS M-Estimato LMedS RANSAC MLESAC					
MLESAC MAPSAC	squares	Eigen Analysis		Approximate Maximum Likelihood	

LS: Least-Squares Eig: Eigen Analysis AML: Approximate Maximum Likelihood

3.6 Accuracy Evaluation

Image plane camera 1

Image plane camera 2

3.7 Experimental Results: Synthetic Images (I)

Linear methods: Good results if the points are well located and no outilers

Methods*	Linear			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
$\sigma=0.0$	14.250	0.000	0.000	1.920
outliers 0\%	13.840	0.000	0.000	1.143
$\sigma=0.0$	25.370	339.562	17.124	30.027
outliers 10\%	48.428	433.013	31.204	59.471
$\sigma=0.1$	135.775	1.331	0.107	0.120
outliers 0\%	104.671	0.788	0.088	0.091
$\sigma=0.1$	140.637	476.841	19.675	70.053
outliers 10\%	104.38 .5	762.756	46.505	63.974
$\sigma=0.5$	163.839	5.548	0.538	0.642
outliers 0\%	178.222	3.386	0.362	0.528
$\sigma=0.5$	140.932	507.653	19.262	26.475
outliers 10\%	109.427	1340.808	49.243	54.067
$\sigma=1.0$	65.121	21.275	1.065	1.319
outliers 0\%	58.184	12.747	0.744	0.912
$\sigma=1.0$	128.919	429.326	21.264	61.206
outliers 10\%	100.005	633.019	53.481	64.583

* Mean and Std. in pixels

[^0]
3.7 Experimental Results: Synthetic Images (I)

Iterative methods: Can cope with noise but inefficient in the presence of outliers

Methods*	Iterative						
	5	6	7	8	9	10	11
$\sigma=0.0$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
outliers 0\%	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\sigma=0.0$	161.684	20.445	∞	187.474	18.224	17.124	16.978
outliers 10\%	117.494	30.487	∞	197.049	36.141	31.204	29.015
$\sigma=0.1$	1.328	0.107	1.641	1.328	0.112	0.107	0.110
outliers 0\%	0.786	0.088	0.854	0.786	0.092	0.088	0.091
$\sigma=0.1$	158.961	32.765	146.955	183.961	15.807	14.003	14.897
outliers 10%	124.202	67.308	94.323	137.294	40.301	38.485	39.388
$\sigma=0.5$	5.599	0.538	7.017	5.590	0.554	0.538	0.543
outliers 0\%	3.416	0.361	3.713	3.410	0.361	0.362	0.368
$\sigma=0.5$	161.210	31.740	∞	217.577	19.409	22.302	22.262
outliers 10%	136.828	59.126	∞	368.061	51.154	59.048	59.162
$\sigma=1.0$	20.757	1.068	345.123	21.234	1.071	1.065	1.066
outliers 0\%	12.467	0.772	294.176	12.719	0.745	0.744	0.748
$\sigma=1.0$	158.849	37.480	∞	152.906	18.730	18.374	19.683
outliers 10\%	120.461	52.762	∞	120.827	38.644	39.993	42.112

Methods: 5.- Iterative Linear; 6.- Iterative Newton-Raphson;
7.- Minimization in parameter space;
8.- Gradient using LS; 9.- Gradient using Eigen;

* Mean and Std. in pixels
10.- FNS; 11.- CFNS

3.7 Experimental Results: Synthetic Images (I)

Robust methods: Cope with both noise and outliers

Methods	Robust							
	12	13	14	15	16	17	18	19
$\sigma=0.0$	0.000	0.000	0.000	0.000	0.000	0.000	0.100	0.011
outliers 0\%	0.000	0.000	0.000	0.000	0.000	0.000	0.079	0.009
$\sigma=0.0$	273.103	4.909	1.714	0.000	0.000	16.157	19.375	0.115
outliers 10\%	360.443	4.493	2.994	0.000	0.000	26.923	70.160	0.115
$\sigma=0.1$	0.355	0.062	0.062	1.331	0.107	0.107	0.139	0.168
outliers 0\%	0.257	0.042	0.041	0.788	0.088	0.088	0.123	0.155
$\sigma=0.1$	73.354	4.876	4.130	0.449	0.098	2.389	21.784	0.701
outliers 10%	59.072	4.808	2.997	0.271	0.077	5.763	97.396	0.740
$\sigma=0.5$	2.062	0.392	0.367	5.548	0.538	0.538	0.550	0.762
outliers 0\%	1.466	0.237	0.207	3.386	0.362	0.362	0.377	0.618
$\sigma=0.5$	143.442	3.887	3.147	47.418	0.586	18.942	23.859	0.629
outliers 10\%	111.694	3.969	2.883	29.912	0.434	53.098	79.890	0.452
$\sigma=1.0$	8.538	0.794	0.814	21.275	1.065	1.065	1.089	1.072
outliers 0\%	6.306	0.463	0.463	12.747	0.744	0.744	0.768	0.785
$\sigma=1.0$	120.012	3.921	4.089	25.759	1.052	14.076	19.298	1.041
outliers 10\%	122.436	3.752	4.326	15.217	0.803	30.274	65.149	0.822

Methods: 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;
14.- M-Estimator proposed by Torr;
15.- LMedS using LS; 16.- LMedS using Eigen;

* Mean and Std. in pixels
17.- RANSAC; 18.- MLESAC; 19.- MAPSAC.

3.7 Experimental Results: Synthetic Images (II)

Computing Time

1.- 7-Point; 2.- 8-Point with Least-Squares; 3.- 8-Point with Eigen Analysis; 4.- Rank-2 Constraint;
5.- Iterative Linear; 6.- Iterative Newton-Raphson; 7.- Minimization in parameter space; 8.- Gradient using LS;
9.- Gradient using Eigen; 10.- FNS; 11.- CFNS; 12.- M-Estimator using LS; 13.- M-Estimator using Eigen; 14.- M-Estimator proposed by Torr; 15.- LMedS using LS; 16.- LMedS using Eigen; 17.- RANSAC; 18.- MLESAC; 19.- MAPSAC.

3.7 Experimental Results: Real Images (I)

3.7 Experimental Results: Real Images (II)

	Methods*	Robust							
		12	13	14	15	16	17	18	19
	Urban	1.668	0.309	0.279	1.724	0.319	0.440	0.449	0.440
Hze	Scene	0.935	0.228	0.189	1.159	0.269	0.334	0.373	0.348
\pm	Mobile Robot	5.775	0.274	0.593	24.835	1.559	3.855	2.443	1.274
-	Scene	50.701	0.192	0.524	38.134	2.715	6.141	5.629	2.036
	Underwater	0.557	0.650	0.475	2.439	0.847	1.725	3.678	1.000
(3)	Scene	0.441	0.629	0.368	2.205	0.740	2.138	12.662	0.761
	Road	0.373	0.136	0.310	0.825	0.609	0.609	0.427	0.471
	Scene	0.635	0.113	0.256	1.144	0.734	0.734	0.410	0.403
	Aerial	0.099	0.085	0.161	0.179	0.149	0.149	0.216	0.257
	Scene	0.063	0.058	0.106	0.158	0.142	0.142	0.186	0.197
5in	Kitchen	0.584	0.280	0.263	1.350	0.545	2.623	0.864	0.582
N	Scene	0.425	0.207	0.191	1.200	0.686	3.327	3.713	0.717

* Mean and Std. in pixels

$$
\begin{array}{ll}
\text { Methods: } & \text { 12.- M-Estimator using LS; 13.- M-Estimator using Eigen; } \\
& \text { 14.- M-Estimator proposed by Torr; } \\
& \text { 15.- LMedS using LS; 16.- LMedS using Eigen; } \\
& \text { 17.- RANSAC; 18.- MLESAC; 19.- MAPSAC. }
\end{array}
$$

3.8 Calibrated reconstruction

Calibrated 3D Reconstruction process:

1. The Internal Parameters are known (by camera calibration)
2. Calculate the Fundamental Matrix
3. Determine the External Parameters (rotation and translation from one camera to the other) from the Fundamental Matrix
4. Determine 3D point locations, i.e. perform the 3D reconstruction.

3.8 Calibrated reconstruction

Determine the External Parameters:

1. Determine the Essential matrix E from the fundamental matrix F and the camera calibration matrix K , since we know the Intrinsic Parameters of the camera.

$$
\begin{array}{ll}
F=\mathbf{A}^{\prime-t} R^{t}[t]_{x} \mathbf{A}^{-1} & E=R^{t}[t]_{x} \\
F^{\prime}=\mathbf{A}^{-t}[t]_{x} R \mathbf{A}^{\prime-1} & E^{\prime}=[t]_{x} R
\end{array}
$$

2. Calculate the External Parameters: \mathbf{R} and \mathbf{t}

a) SVD of $\mathrm{E}: \mathrm{E}=\mathrm{USV}^{\top}$
$R=U W V^{\top}$ or $U W^{\top} V^{\top}$
$t=u 3$ or $-u 3$, where $u 3$ is the last column of U

There are 4 combinations of translations and rotations.

3.8 Calibrated reconstruction

Determine the External Parameters:

1. Determine the Essential matrix E from the fundamental matrix F and the camera calibration matrix K , since we know the Intrinsic Parameters of the camera.

$$
\begin{array}{ll}
F=\mathbf{A}^{\prime-t} R^{t}[t]_{x} \mathbf{A}^{-1} & E=R^{t}[t]_{x} \\
F^{\prime}=\mathbf{A}^{-t}[t]_{x} R \mathbf{A}^{\prime-1} & E^{\prime}=[t]_{x} R
\end{array}
$$

The correct pair will produce points in front of both cameras.

There are 4 combinations of translations and rotations.

3.10 Stereo vision using ...

White Box model

Explicit model: the physical parameters of the camera are known

As close as possible to a full description of the real system

Black Box model

Implicit model: emulates the camera
behavior without actually knowing the camera parameters.

A set of transfer functions and parameters that do not describe any internal physics.

- Do you think that is possible to build a black box model of a stereo configuration of cameras?
- What are the inputs? / Outputs?

3.10 Stereo vision using fuzzy systems

3.10 Stereo vision using fuzzy systems

3.10 Stereo vision using fuzzy systems

Calibration of the fuzzy system using the 3D and 2D points

Camera 2

3D reconstruction from two views

3.10 Stereo vision using fuzzy systems

Features	Crisp (White Box)	Fuzzy (Black Box)
Robustness to noise	Low	High
Accuracy outside of a bounding box	High	Low
Model simplicity	Low	High
Adaptability to new camera configurations	Low	High

End of the SSIP presentation

Thank you for your time.
 Any questions?

[^0]: Methods: 1.- 7-Point; 2.- 8-Point with Least-Squares;
 3.- 8-Point with Eigen Analysis 4.- Rank-2 Constraint

