

SSIP 2011

19th Summer School on Image Processing 7 July - 16 July 2011 • Szeged, Hungary

3D Reconstruction from two views

Presented by Radu Orghidan

Contents

- 3.1 Shape from X
- 3.2 Stereo Vision Introduction
- 3.3 Triangulation Principle and Constraints
- 3.4 Epipolar Geometry
- 3.5 Computing the Fundamental Matrix
- 3.6 Accuracy Evaluation
- 3.7 Experimental Results
- 3.8 Calibrated reconstruction
- 4. Calibration using fuzzy systems

Techniques based on:

- Modifying the intrinsic camera parameters

i.e. <u>Depth from Focus/Defocus</u> and Depth from Zooming

Considering an addi al source
 i.e. Shape from Structo Stereo

- Considering additional surface in i.e. Shape from Shading, Shape from Focus/Defocus Geometric Constraints
- Multiple views
 - i.e. Shape from Stereo and Shape from Motion

Techniques based on:

- Modifying the intrinsic camera parameters
 i.e. Depth from Focus/Defocus and Depth from Zooming
- Considering an additional source of light onto the scene
 i.e. Shape from Structured Light and Shape from Photometric
 Stereo
- Considering addition
 i.e. Shape from Shading, Shape from Geometric Constraints
- Multiple views

om

Shape from Structured Light

i.e. Shape from Stereo and Shape from Motion

Techniques based on:

- Modifying the intrinsic camera parameters
 i.e. Depth from Focus/Defocus and Depth from Zooming
- Considering an additional source of light onto the scene i.e. Shape from Structured Light and Shape from Photometric Stereo
- Considering additional surface information

i.e. <u>Shape from Shading</u>, Shape from <u>Texture and Shape from</u> Geometric Const. s

Multiple views
 i.e. Shape from Stereo and Snape

Techniques based on:

- Modifying the intrinsic camera parameters
 i.e. Depth from Focus/Defocus and Depth from Zooming
- Considering an additional source of light onto the scene
 i.e. Shape from Structured Light and Shape from Photometric
 Stereo

3.3 Triangulation Principle

3D reconstruction from two views

Constraints:

• The Correspondence Problem \rightarrow F/E matrix

3.3 Constraints in Stereo Vision

Calibrated 3D Reconstruction process:

- 1. The **Internal Parameters** are known (by camera calibration)
- 2. Calculate the Fundamental Matrix
- 3. Determine the External Parameters (rotation and translation from one camera to the other) from the Fundamental Matrix
- 4. Determine **3D point locations**, i.e. perform the **3D reconstruction**.

12

eature extraction techniques

The **intrinsic parameters** must be obtained from camera calibration. The **extrinsic parameters** are obtained from the **FUNDAMENTAL MATRIX**

3.4 Epipolar Geometry (II) - Modelling

3.4 Epipolar Geometry (III) - Modelling

- •The Epipolar Geometry concerns the problem of computing the plane Π .
 - A plane is defined by the cross product between two vectors
 - M is unknown, m and m' are known
 - {W} is located at {C} or {C'} and Π can be computed at {C} or {C'} \rightarrow 4 solutions

- •The Epipolar Geometry concerns the problem of computing the plane Π .
 - A plane is defined by the cross product between two vectors
 - M is unknown, m and m' are knowns
 - {W} is located at {C} or {C'} and Π can be computed at {C} or {C'} \rightarrow 4 solutions

Since epipolar lines are contained in the plane Π , we can define the line by a cross product of two vectors, obtaining the orthogonal vector of the line.

$$l'_{m} = e' \times P'^{-1} m = -R^{t} t \times R^{t} m = -R^{t} (t \times m) = -R^{t} [t]_{x} m$$
$$l_{m'} = e \times P' m' = t \times Rm' = [t]_{x} Rm'$$

3.4 Epipolar Geometry (IX) - Modelling

F and F' are related by a transpose. So,

$$F = F'^{t} \qquad F = \mathbf{A}'^{-t} R^{t} [t]_{x} \mathbf{A}^{-1}$$
$$F' = F^{t} \qquad F' = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}'^{-1}$$

Demonstration:

$$F^{t} = \left(\mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1}\right)^{t} = \mathbf{A}^{-t} \left(\mathbf{A}^{-t} R^{t} [t]_{x}\right)^{t} = \mathbf{A}^{-t} [t]_{x} \left(\mathbf{A}^{-t} R^{t}\right)^{t} = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1} = F^{-t} \left(\mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1}\right)^{t} = \mathbf{A}^{-t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} R^{t} \left(\mathbf{A}^{-t} [t]_{x}\right)^{t} = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1} = F^{-t} R^{t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} R^{t} \left(\mathbf{A}^{-t} [t]_{x}\right)^{t} = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1} = F^{-t} R^{t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} R^{t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} R^{t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1} = F^{-t} R^{t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}$$

The same dissertation can be made assuming the origin at $\{C'\}$, obtaining two more fundamental matrices that are also related to F and F'.

3.4 Epipolar Geometry (X) - Modelling

The Essential Matrix is the calibrated case of the Fundamental matrix.

• The Intrinsic parameters are known: A and A' are known The problem is reduced to estimate E or E'.

$$F = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1} \qquad E = R^{t} [t]_{x}$$
$$F' = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1} \qquad E' = [t]_{x} R$$

The monocular stereo is a symplified version of F where A = A', reducing the complexity of computing F.

$$F = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1}$$
$$F' = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1}$$

3.5 Computing F: The Eight Point Method

The epipolar geometry is defined as:

$$m^{T}\mathbf{F}'m' = 0 \qquad \begin{bmatrix} x_{i} & y_{i} & 1 \end{bmatrix}\mathbf{F}' \begin{bmatrix} x_{i}' \\ y_{i}' \\ 1 \end{bmatrix} = 0$$

Operating, we obtain:

 $U_n f = 0$ $U_n = (u_1, u_2, ..., u_n)$ $u_{i} = (x_{i}'x_{i}, y_{i}'x_{i}, x_{i}, x_{i}'y_{i}, y_{i}'y_{i}, y_{i}, x_{i}', y_{i}', 1)$ $f = (F_{11}, F_{12}, F_{13}, F_{21}, F_{22}, F_{23}, F_{31}, F_{32}, F_{33})^{t}$

3.5 Computing F: The Eight Point Method and LS²⁶

 $U_n f = 0$ First solution is : f = 0 NOT WANTED

F is defined up to a scale factor, so we can fix one of the component to 1. Let's fix $F_{33} = 1$.

$$U'_{n}f' = -1_{n}$$

$$U'_{n} = (u'_{1}, u'_{2}, ..., u'_{n})$$

$$u'_{i} = (x'_{i}x_{i}, y'_{i}x_{i}, x_{i}, x'_{i}y_{i}, y'_{i}y_{i}, y_{i}, x'_{i}, y'_{i})$$

$$f = (F_{11}, F_{12}, F_{13}, F_{21}, F_{22}, F_{23}, F_{31}, F_{32})^{t}$$

Then:

3.5 Computing F: The Eight Point Method and Eigen Analysis

 $U_n f = 0$

First solution is : f = 0 NOT WANTED

F has to be rank-2 because $[t_x]$ is rank-2.

$$F = \mathbf{A}^{t-t} R^t [t]_x \mathbf{A}^{-1} \qquad [t]_x = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

Any system of equations:

$$U_n f = 0 \qquad f = (F_{11}, F_{12}, F_{13}, F_{21}, F_{22}, F_{23}, F_{31}, F_{32}, F_{33})^t$$

can be **solved by SVD** so that f lies in the nullspace of $U_n = UDV^T$.

 $[U,D,V] = svd (U_n)$

Hence f corresponds to a multiple of the column of V that belongs to the unique singular value of D equal to 0. Note that f is only known up to a scaling factor.

3.5 Computing the Fundamental Matrix: A Survey²⁸

	Linear	Iterative	Robust	Optimisation	Rank-2	
Seven point (7p)	X			—	yes	
Eight point (8p)	X			LS or Eig.	no	
Rank-2 constraint	X			LS	yes	
Iterative Newton- Raphson		х		LS	no	
Linear iterative		Х		LS	no	
<i>Non-linear minimization in parameter space</i>		х		Eig.	yes	
Gradient technique		V				
FNS	•		٩			
CFNS			\rightarrow	\cap	Y	
M-Estimato						
LMedS			× •			
RANSAC	•				\geq	
MLESAC	-					
MAPSAC Leas	st-squares	Eigen Analysis Approximate Likelih			lihood	
_S: Least-Squares Eig: Eigen Analysis AML: Approximate Maximum Likelihood						

3.6 Accuracy Evaluation

3D reconstruction from two views

3.7 Experimental Results: Synthetic Images (I)

Linear methods: Good results if the	e points are well	located and no outilers
-------------------------------------	-------------------	-------------------------

Methods*	Linear							
	1	2	3	4				
$\sigma = 0.0$	14.250	0.000	0.000	1.920				
outliers 0%	13.840	0.000	0.000	1.143				
$\sigma = 0.0$	25.370	339.562	17.124	30.027				
outliers 10%	48.428	433.013	31.204	59.471				
$\sigma = 0.1$	135.775	1.331	0.107	0.120				
outliers 0%	104.671	0.788	0.088	0.091				
$\sigma = 0.1$	140.637	476.841	19.675	70.053				
outliers 10%	104.385	762.756	46.505	63.974				
$\sigma = 0.5$	163.839	5.548	0.538	0.642				
outliers 0%	178.222	3.386	0.362	0.528				
$\sigma = 0.5$	140.932	507.653	19.262	26.475				
outliers 10%	109.427	1340.808	49.243	54.067				
$\sigma = 1.0$	65.121	21.275	1.065	1.319				
outliers 0%	58.184	12.747	0.744	0.912				
$\sigma = 1.0$	128.919	429.326	21.264	61.206				
outliers 10%	100.005	633.019	53.481	64.583				

mean std

* Mean and Std. in pixels

Methods: 1.- 7-Point; 2.- 8-Point with Least-Squares; 3.- 8-Point with Eigen Analysis 4.- Rank-2 Constraint

3D reconstruction from two views

3.7 Experimental Results: Synthetic Images (I)

Methods*	Iterative							
	5	6	7	8	9	10	11	
$\sigma = 0.0$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
outliers 0%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
$\sigma = 0.0$	161.684	20.445	∞	187.474	18.224	17.124	16.978	
outliers 10%	117.494	30.487	∞	197.049	36.141	31.204	29.015	
$\sigma = 0.1$	1.328	0.107	1.641	1.328	0.112	0.107	0.110	
outliers 0%	0.786	0.088	0.854	0.786	0.092	0.088	0.091	
$\sigma = 0.1$	158.961	32.765	146.955	183.961	15.807	14.003	14.897	
outliers 10%	124.202	67.308	94.323	137.294	40.301	38.485	39.388	
$\sigma = 0.5$	5.599	0.538	7.017	5.590	0.554	0.538	0.543	
outliers 0%	3.416	0.361	3.713	3.410	0.361	0.362	0.368	
$\sigma = 0.5$	161.210	31.740	∞	217.577	19.409	22.302	22.262	
outliers 10%	136.828	59.126	∞	368.061	51.154	59.048	59.162	
$\sigma = 1.0$	20.757	1.068	345.123	21.234	1.071	1.065	1.066	
outliers 0%	12.467	0.772	294.176	12.719	0.745	0.744	0.748	
$\sigma = 1.0$	158.849	37.480	∞	152.906	18.730	18.374	19.683	
outliers 10%	120.461	52.762	∞	120.827	38.644	39.993	42.112	

Iterative methods: Can cope with noise but inefficient in the presence of outliers

Methods: 5.- Iterative Linear; 6.- Iterative Newton-Raphson;

7.- Minimization in parameter space;

8.- Gradient using LS; 9.- Gradient using Eigen;

* Mean and Std. in pixels

10.- FNS; 11.- CFNS

3.7 Experimental Results: Synthetic Images (I)

Methods	Robust							
	12	13	14	15	16	17	18	19
$\sigma = 0.0$	0.000	0.000	0.000	0.000	0.000	0.000	0.100	0.011
outliers 0%	0.000	0.000	0.000	0.000	0.000	0.000	0.079	0.009
$\sigma = 0.0$	273.403	4.909	4.714	0.000	0.000	16.457	19.375	0.115
outliers 10%	360.443	4.493	2.994	0.000	0.000	26.923	70.160	0.115
$\sigma = 0.1$	0.355	0.062	0.062	1.331	0.107	0.107	0.139	0.168
outliers 0%	0.257	0.042	0.041	0.788	0.088	0.088	0.123	0.155
$\sigma = 0.1$	73.354	4.876	4.130	0.449	0.098	2.389	21.784	0.701
outliers 10%	59.072	4.808	2.997	0.271	0.077	5.763	97.396	0.740
$\sigma = 0.5$	2.062	0.392	0.367	5.548	0.538	0.538	0.550	0.762
outliers 0%	1.466	0.237	0.207	3.386	0.362	0.362	0.377	0.618
$\sigma = 0.5$	143.442	3.887	3.147	47.418	0.586	18.942	23.859	0.629
outliers 10%	111.694	3.969	2.883	29.912	0.434	53.098	79.890	0.452
$\sigma = 1.0$	8.538	0.794	0.814	21.275	1.065	1.065	1.089	1.072
outliers 0%	6.306	0.463	0.463	12.747	0.744	0.744	0.768	0.785
$\sigma = 1.0$	120.012	3.921	4.089	25.759	1.052	14.076	19.298	1.041
outliers 10%	122.436	3.752	4.326	15.217	0.803	30.274	65.149	0.822

Robust methods: Cope with both noise and outliers

Methods: 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;

14.- M-Estimator proposed by Torr;

15.- LMedS using LS; 16.- LMedS using Eigen;

* Mean and Std. in pixels

17.- RANSAC; 18.- MLESAC; 19.- MAPSAC.

3.7 Experimental Results: Synthetic Images (II)

33

7-Point; 2.- 8-Point with Least-Squares; 3.- 8-Point with Eigen Analysis; 4.- Rank-2 Constraint;
 Iterative Linear; 6.- Iterative Newton-Raphson; 7.- Minimization in parameter space; 8.- Gradient using LS;
 Gradient using Eigen; 10.- FNS; 11.- CFNS; 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;
 M-Estimator proposed by Torr; 15.- LMedS using LS; 16.- LMedS using Eigen; 17.- RANSAC;
 MLESAC; 19.- MAPSAC.

3.7 Experimental Results: Real Images (I)

3.7 Experimental Results: Real Images (II)

	Methods*	Robust							
		12	13	14	15	16	17	18	19
	Urban	1.668	0.309	0.279	1.724	0.319	0.440	0.449	0.440
20	Scene	0.935	0.228	0.189	1.159	0.269	0.334	0.373	0.348
	Mobile Robot	5.775	0.274	0.593	24.835	1.559	3.855	-2.443	1.274
	Scene	50.701	0.192	0.524	38.434	2.715	6.141	5.629	2.036
	Underwater	0.557	0.650	0.475	2.439	0.847	1.725	3.678	1.000
Ma - D	Scene	0.441	0.629	0.368	2.205	0.740	2.138	12.662	0.761
	Road	0.373	0.136	0.310	0.825	0.609	0.609	0.427	0.471
and a second second	Scene	0.635	0.113	0.256	1.144	0.734	0.734	0.410	0.403
Stor Star	Aerial	0.099	0.085	0.161	0.179	0.149	0.149	0.216	0.257
	Scene	0.063	0.058	0.106	0.158	0.142	0.142	0.186	0.197
Contraction of the second	Kitchen	0.584	0.280	0.263	1.350	0.545	2.623	0.864	0.582
New	Scene	0.425	0.207	0.191	1.200	0.686	3.327	3.713	0.717

Methods: 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;

14.- M-Estimator proposed by Torr;

15.- LMedS using LS; 16.- LMedS using Eigen;

* Mean and Std. in pixels

17.- RANSAC; 18.- MLESAC; 19.- MAPSAC.

3D reconstruction from two views

3.8 Calibrated reconstruction

Calibrated 3D Reconstruction process:

- 1. The **Internal Parameters** are known (by camera calibration)
- 2. Calculate the Fundamental Matrix
- 3. Determine the External Parameters (rotation and translation from one camera to the other) from the Fundamental Matrix
- 4. Determine **3D point locations,** i.e. perform the **3D reconstruction.**

3.8 Calibrated reconstruction

Determine the External Parameters:

 Determine the Essential matrix E from the fundamental matrix F and the camera calibration matrix K, since we know the Intrinsic Parameters of the camera.

$$F = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1} \qquad E = R^{t} [t]_{x}$$
$$F' = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1} \qquad E' = [t]_{x} R$$

- 2. Calculate the External Parameters: R and t
 - a) SVD of E: $E = USV^T$

 $R = UWV^{T} \text{ or } UW^{T}V^{T}$

t = u3 or -u3, where u3 is the last column of U

There are 4 combinations of translations and rotations.

3.8 Calibrated reconstruction

Determine the External Parameters:

 Determine the Essential matrix E from the fundamental matrix F and the camera calibration matrix K, since we know the Intrinsic Parameters of the camera.

$$F = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1} \qquad E = R^{t} [t]_{x}$$
$$F' = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1} \qquad E' = [t]_{x} R$$

- 2. Calculate the External Parameters: R and t
 - a) SVD of E: $E = USV^T$

 $R = UWV^{T} \text{ or } UW^{T}V^{T}$

t = u3 or -u3, where u3 is the last column of U

3.10 Stereo vision using ...

White Box model

Explicit model: the physical parameters of the camera are known

As close as possible to a full description of the real system

Black Box model

Implicit model: emulates the camera behavior without actually knowing the camera parameters.

A set of transfer functions and parameters that do not describe any internal physics.

- Do you think that is possible to build a black box model of a stereo configuration of cameras?
- What are the inputs? / Outputs?

3D reconstruction from two views

Camera 1

3D points

The 3D points are calculated taking as origin of the coordonate system the lower left corner of the calibration pattern.

The pattern is moved at different known distances from the camera and the stereo images are captured. **The 2D points** are identified and matched in all the images. Camera 2

3D reconstruction from two views

Features	Crisp (White Box)	Fuzzy (Black Box)
Robustness to noise	Low	High
Accuracy outside of a bounding box	High	Low
Model simplicity	Low	High
Adaptability to new camera configurations	Low	High

3D reconstruction from two views

End of the SSIP presentation

Thank you for your time. Any questions?

3D reconstruction from two views