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3.1 Shape from X

Techniques based on:

— Modifying the intrinsic camera parameters
l.e. Depth from Focus/Defocus and Depth from Zooming

— Considering an add | sqQuIrce P
l.e. Shape from Struc I ric
Stereo

— Considering additional surface in "
Shape from Focus/Defocus

l.e. Shape from Shading, Shape frérm—rerorcorrarorape0m
Geometric Constraints

— Multiple views
l.e. Shape from Stereo and Shape from Motion
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Techniques based on:

— Modifying the intrinsic camera parameters
l.e. Depth from Focus/Defocus and Depth from Zooming

— Considering an additional source of light onto the scene
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— Considering additional surface information
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— Multiple views
l.e. Shape from Stereo and 3nape
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3.1 Shape from X

Techniques based on:

— Modifying the intrinsic camera parameters
l.e. Depth from Focus/Defocus and Depth from Zooming

— Considering an additional source of light onto the scene

l.e. Shape from Structured Light and Shape from Photometric
Stereo

— Considering additional surface in

l.e. Shape from Shading, ShQpe fr«
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3.2 Stereo Vision Introduction
.

Y,, X,
Camera Z,, -
coordinate Xzzrrljdi ntatevv « Camera’
system Q, {w} ¢ coordinate
system

{C} O. system
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3.3 Triangulation Principle
- —

coordinate & W} .
system

Camera Zc

coordinate X. / Camera’

system o coordinate
¢ system
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Steps:

1-P,+mu=P,+myv
2 - Expand to x,y,z
3-Getmand m’

4 — Compute Pw




3.3 Triangulation Principle vy
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3.3 Triangulation Principle
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’G?"IHH P,=Py+my (P;-Py)
P, =Ps+ my, (Py-Ps3)

Minimize the distance between points:

Min || P, - P, ||?

Min [| Py + my, (P, - Py) - Py -my, (P, - P3) |2
Finding m,, and m,, once expanded to (x,y and z)

http://astronomy.swin.edu.au/~pbourke/geometry/lineline3d/

Compute the dot product between vectors:
(Pa-Pp)' (P,-P)=0
(Pa-Pp)' (P4-Pg)=0
Because they are perpendicular.
Finding m_, and m,, once expanded to P, P,
and (x,y and z)
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3.3 Constraints in Stereo Vision B

3D Reconstruction:
s'm="A.“K, "M

SI |'m|: I'AIC- C'Kl\NIWM

I ] I 1 \ ) ) m
AC ;A c' Intrinsics: Optics & Internal Geometry \I/ §

CKW O K \y: EXtrinsics: Camera Pose

Constraints:
» The Correspondence Problem -

3D reconstruction from two views
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3.3 Constraints in Stereo Vision |
-
Calibrated 3D Reconstruction process: O

1. The Internal Parameters are known (by
camera calibration)

2. Calculate the Fundamental Matrix

':':':'a'm 7
3. Determine the External Parameters m
(rotation and translation from one camera to \I/
the other) from the Fundamental Matrix o Oc-
Cc
4. Determine 3D point locations, i.e. perform /

the 3D reconstruction. /
| |
1

3D reconstruction from two views




3.3 Constraints in Stereo Vision

- T

3D Reconstruction: O

|s ! ml Ab CKJWM o Do

[s1'm'} [A N\K\ ['m ) .

coordinates parameters Oc

Obtained by - _ o
Feature extraction The intrinsic parameters must be obtained from camera calibration.
techniques The extrinsic parameters are obtained from the FUNDAMENTAL MATRIX

3D reconstruction from two views

/ A
2D image Intrinsic and extrinsic \I/
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3.4 Epipolar Geometry (1) - Modelling

 Focal points, epipoles and epipolar lines
e e is defined by O..in {l}, e’ is defined by O in {I'}

» m defines an epipolar line in {I'}; m’ defines an epipolar line in {I}
* All epipolar lines intersect at the epipole

3D reconstruction from two views




15

3.4 Epipolar Geometry (I1) - Modelling
- —

Epipolar geometry of Camera 1 Epipolar geometry of Camera 2
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3.4 Epipolar Geometry (I111) - Modelling

epipole

epipole
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3.4 Epipolar Geometry (1V) - Modelling

*The Epipolar Geometry concerns the problem of computing the plane II.
» A plane is defined by the cross product between two vectors
* M is unknown, m and m’ are known
* {W} is located at {C} or {C’} and IT can be computed at {C} or {C'} =
- 4 solutions
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3.4 Epipolar Geometry (1V) - Modelling

*The Epipolar Geometry concerns the problem of computing the plane IT.
» A plane is defined by the cross product between two vectors
* M is unknown, m and m’ are knowns
* {W} is located at {C} or {C’} and IT can be computed at {C} or {C'} =
- 4 solutions
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3.4 Epipolar Geometry (V) - Modelling

* Assume {W} at {C}
P=[1 0]
K=[R t]
P=PK=[R t]
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3.4 Epipolar Geometry (VI) - Modelling

» Assume {W} at {C}
P=[1 0]
K=[R t]

Oy
’ b L P=PK=[R t]
i \ G A
A e
C |- m “ /

CKC

el 0] 0]
1 e_P'-1H [R' —R 1J —R't

Since epipolar lines are contained in the plane I1, we can define the line by
a cross product of two vectors, obtaining the orthogonal vector of the line.

I' =exP™'m=-R'txR'm=-R'(txm)=-R'[t] m
| =exP'm'=txRm'=|[t] Rm'
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3.4 Epipolar Geometry (VIIl) - Modelling

The Fundamental matrix is
defined by inner product of a
point with their epipolar line.

I' =—R'[t] m

Im' = [t]x Rm’
ml' =m'l' =—m"R'[t] m 0=-m"R'[t] m
m-1_. =m'l_. =m'[t] Rm' 0=m"[t],Rm'

- E Orthogonal, their cosinus is 0 ﬁ
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3.4 Epipolar Geometry (VIII) - Modelling

Now we consider the

A intrinsics. Points in pixels
Oy . .
Instead of metrics
P ~ — A lm
m=Am m=A"m

0=-m'R'[t],m= (A" iR [t], Al = A" A~ Rt], A

0=m't], Rm'= (A [t], RA™ A= M A [t], RA™
F=A"R'[t]A™ m* F

B F'=A"[t,RA™ it F

= 3
|
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3.4 Epipolar Geometry (1X) - Modelling

F and F’ are related by a transpose. So,

F=F" F=A"R'[t] A
F'=F F'=A"[t] RA™
Demonstration:

t

Fi = (AR A =AY (ARt = A ] (A R = At

|
o (Al RA™T <A™ (ALRS - A R(ARL] A RE

RAT=F'
| AT =F

X

The same dissertation can be made assuming the origin at
{C’}, obtaining two more fundamental matrices that are also
related to F and F’.

3D reconstruction from two views
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3.4 Epipolar Geometry (X) - Modelling

The Essential Matrix is the calibrated case of the Fundamental matrix.
» The Intrinsic parameters are known: A and A’ are known
The problem is reduced to estimate E or E'.

F=A"R'[tA™ E=R[t]
F'=A"[t],RA" E'=[tLR

The monocular stereo is a symplified version of F where A = A, reducing the
complexity of computing F.

F=A"R'[t]A™
F'=A"[t] RA™

3D reconstruction from two views
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3.5 Computing F: The Eight Point Method

The epipolar geometry is defined as:

mF'm=0 [Xi Y, 1]Fl yi |=0

Operating, we obtain:
U f=0
U, =(u,u,,..,u,)

U; = (X% Y% %0 XY ViV Vi X V)
t
f (Fll’ |:12’ I:13’ F21’ F22’ F23’ F31’ F32’ F33)

3D reconstruction from two views




3.5 Computing F: The Eight Point Method and LS

-
U f=0
Firstsolutionis: ~ f =0 NOT WANTED
F is defined up to a scale factor, so we can fix one of the component to 1.
Let's fix F33 = 1.
! !
U/ f'=-1
4 ! / 4
U, =(u,uy,...,u;)
! / ! ! ! !
(X% Y% %0 X Vi Vi Vi ¥ X Vi)
t
f= ( Fis R Rs By By By Ry, F32)

u’

C

F=-ur
f':—Ur’]_l]_n |:> f':—(Ur']tUr'])_lur'lt]11 Least-Squares

3D reconstruction from two views




3.5 Computing F: The Eight Point Method and Eigen Anal)zlgis
- —

U f =0
First solution is : f=0 NOT WANTED

F has to be rank-2 because [t,] is rank-2.

0 -z vy
F=A"R[t]A*  [fl=|z 0o —x
-y x 0

Any system of equations:

Un f=0 f= (F11v FiooFis o Fop Fogy By By Fss)t
can be solved by SVD so that f lies in the nullspace of U,= UDVT.

[U,D,V] =svd (U,)
Hence f corresponds to a multiple of the column of V that belongs to the

unique singular value of D equal to 0.
Note that f is only known up to a scaling factor.

3D reconstruction from two views




3.5 Computing the Fundamental Matrix: A Surve);8

-
Linear Iterative | Robust Optimisation Rank-2

Seven point (7p) X — yes
Eight point (8p) X LS or Eig. no
Rank-2 constraint X LS yes
gzrpar:lsv:nNewton X LS o
Linear iterative X LS no
Non-linear
minimization in X Eig. yes
parameter space
Gradient teadedaa.a % e ol
FNS
CFNS
M-Estimatq|
LMedS ®\
RANSAC
MLESAC . .
MAPSAC Least-squares Eigen Analysis Approxll_rirllz'fﬁlg/lozxmum

LS: Least-Squares Eig: Eigen Analysis AML: Approximate Maximum Likelihood
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3.6 Accuracy Evaluation
I

Image plane camera 1 Image plane camera 2

3D reconstruction from two views
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3.7 Experimental Results: Synthetic Images (I)

I
Linear methods: Good results if the points are well located and no outilers
Methods™ Linear
1 2 3 4
oc=20.0 14.250 0.000 [ 0.000 | 1.920 mean
outliers 0% 13.840 0.000 | 0.000 | 1.143 std

135.775 1.331 [ 0.107 | 0.120

163.839 5548 | 0.538 | 0.642

178.222 3.386 | 0.362 | 0.528

: 65.121 21.275 065 | 1.319
outliers 0% H8.184 12747 | 0.744 | 0.912

Methods: 1.- 7-Point; 2.- 8-Point with Least-Squares;
3.- 8-Point with Eigen Analysis 4.- Rank-2 Constraint

* Mean and Std. in pixels

3D reconstruction from two views




3.7 Experimental Results: Synthetic Images (I)
- —

Iterative methods: Can cope with noise but inefficient in the presence of outliers

o=0.1
outliers 0%

Methods™ Iterative
5 6 7 8 9 10 11
oc=20.0 0.000 | 0.000 0.000 0.000 | 0.000 | 0.000 | 0.000
outliers 0% 0.000 | 0.000 0.000 0.000 | 0.000 | 0.000 | 0.000

o=0.5
outliers 0%

oc—=1.0
outliers 0%

- * Mean and Std. in pixels

Methods:

5.-

772 204 176

1.068
0.

lterative Linear; 6.-
7.- Minimization in parameter space,;
8.- Gradient using LS; 9.- Gradient using Eigen;
10.- FNS; 11.- CENS

12 710

Iterative Newton-Raphson;

31
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3.7 Experimental Results: Synthetic Images (I)

-
Robust methods: Cope with both noise and outliers
Methods Robust
12 13 14 15 16 17 18 19
oc=20.0 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 { 0.100 | 0.011
outliers 0% 0.000 | 0.000 | 0.000 { 0.000 | 0.000 | 0.000 | 0.079 | 0.009

oc=20.1
outliers 0%

oc=0.5

outliers 0%

oc=1.0
outliers 0%

- * Mean and Std. in pixels

0.355
0.257

Methods:

0.062
0.042

0.062
0.041

1.331 | 0.107 | 0.107
0.788 [ 0.083 | 0.088

139

0.13¢
0.123

0.168

0.762

0.377 | 0.618

12.- M-Estimator using LS; 13.- M-Estimator using Eigen;
14.- M-Estimator proposed by Torr;
15.- LMedS using LS; 16.- LMedS using Eigen;
17.- RANSAC,; 18.- MLESAC,; 19.- MAPSAC.



3.7 Experimental Results: Synthetic Images (1) :

1.4 T T T T
Computing Time

Linear lterative Robust

1.2

SecC.

5 6 7 8 9 10 11'12 13 14 15 16 17 18 19
. o Methods . :
1.- 7-Point; 2.- 8-Point with Least-Squares; 3.- 8-Point with Eigen Analysis; 4.- Rank-2 Constraint;

5.- Iterative Linear; 6.- Iterative Newton-Raphson; 7.- Minimization in parameter space; 8.- Gradient using LS;
9.- Gradient using Eigen; 10.- ENS; 11.- CENS; 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;
14.- M-Estimator proposed by Torr; 15.- LMedS using LS; 16.- LMedS using Eigen; 17.- RANSAC,;

18.- MLESAC; 19.- MAPSAC.




3.7 Experimental Results: Real Images (I
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3.7 Experimental Results: Real Images (I1)

.
Methods* Robust
12 13 14 15 16 17 18 19
Urban 1.668 | 0.309 | 0.279 1.724 | 0.319 | 0.440 0.449 | 0.440
Scen : ) 37: 3

0.557 | 0.650 | 0.475 | 2.439
0.441 | 0.629 | 0.368 | 2.205

Methods: 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;
14.- M-Estimator proposed by Torr;
o 15.- LMedS using LS; 16.- LMedS using Eigen;
* Mean and Std. in pixels 17.- RANSAC; 18.- MLESAC; 19.- MAPSAC.

3D reconstruction from two views
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3.8 Calibrated reconstruction

T
Calibrated 3D Reconstruction process: O

1. The Internal Parameters are known (by
camera calibration)

2. Calculate the Fundamental Matrix

(3. Determine the External Parameters h m.
(rotation and translation from one camera to \I/
the other) from the Fundamental Matrix o Oc-
Cc
4. Determine 3D point locations, i.e. perform /

\_ the 3D reconstruction. ) /
1 I’
1

3D reconstruction from two views




37

3.8 Calibrated reconstruction
.

Determine the External Parameters: O

\

1. Determine the Essential matrix E from the
fundamental matrix F and the camera
calibration matrix K, since we know the
Intrinsic Parameters of the camera. “m?

F=A"R[ AT E=R[t], g § 0.
F=A [t ,RA?  E'=[t|R s

2. Calculate the External Parameters: R and t

a) SVDof E: E=USVT

R = UWVT or UWTVT
t = u3 or -u3, where u3 is the last column of U »

There are 4 combinations of
translations and rotations.

3D reconstruction from two views
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3.8 Calibrated reconstruction

.
Determine the External Parameters:

1. Determine the Essential matrix E from the |
fundamental matrix F and the camera S

m = IAC C I\( IW M \
calibration matrix K, since we know the — -, :
Intrinsic Parameters of the camera. ﬂl m'k ﬁ Al “K 'W] M
F=A"R[tLJA" E=R'[t], _\/
2D image Unknown 3D
F'= A™ [t] RA' E':[’[] R coordinates coordinates
X X

The correct pair
will produce points
in front of both
cameras.

2. Calculate the External Parameters: R and t

a) SVDof E: E=USVT

R = UWVT or UWTVT
t = u3 or -u3, where u3 is the last column of U »

There are 4 combinations of
translations and rotations.

3D reconstruction from two views
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3.10 Stereo vision using ...
-

White Box model Black Box model

/ \ Implicit model: emulates the camera
behavior without actually knowing the
camera parameters.

Explicit model: the physical parameters
of the camera are known

: _ A set of transfer functions and
As close as possible to a full description .
of the real system parameters that do not describe any

internal physics.
N /

* Do you think that is possible to build a black box model of a stereo
configuration of cameras?

 What are the inputs? / Outputs?

3D reconstruction from two views
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3.10 Stereo vision using fuzzy systems

_____________________________________

i Black box model

: Fuzzy Logic System on X ——» *“x

Fuzzy Logic Svstem on Y : » Uy,

Fuzzv Logic SystemonZ —» *z

T e e e e e s e s e s e e s s s e S e s

3D reconstruction from two views
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3.10 Stereo vision using fuzzy systems

I
3D points Cameral Camera 2

The 3D points are calculated taking as
origin of the coordonate system the lower
left corner of the calibration pattern.

The pattern is moved at different known
distances from the camera and the
stereo images are captured.

The 2D points are identified and
matched in all the images.

3D reconstruction from two views




42

3.10 Stereo vision using fuzzy systems

- —
Cameral Camera 2

ki % m 10

' 3D pointss

Fuzzy system X

N

Fuzzy system 'Y

Fuzzy system Z

o mm mm mm = = == == =

N\

Calibration of the fuzzy system using the
3D and 2D points

3D reconstruction from two views
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3.10 Stereo vision using fuzzy systems

Accuracy / Noise
20 T T T T T 4 T T T T T
—4— 3D error —4&— 3D Error
18 —+— Standard deviation H 359 —#— Standard deviation | |

—
[a]
T
1

White Box Model

<
e [ -
/

Ik |
Black Box Model
251 _

18- —

—
]

30 reconstruction error (mm) f Standard deviation
—
= 4
30 reconstruction error imm) / Standard deviation
[o%]
T
|

0.5r —

%o 15 20 2 30 35 20 %o 1|5 zlu 2|5 3|0 3|5 40
Signal to Noise Ratio Signal to Noise Ratio
Features Crisp (White Box) Fuzzy (Black Box)
Robustness to noise Low High
Accuracy outside of a bounding box High Low
Model simplicity Low High
Adaptability to new camera configurations Low High

3D reconstruction from two views
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End of the SSIP presentation

Thank you for your time.

Any questions?

3D reconstruction from two views



